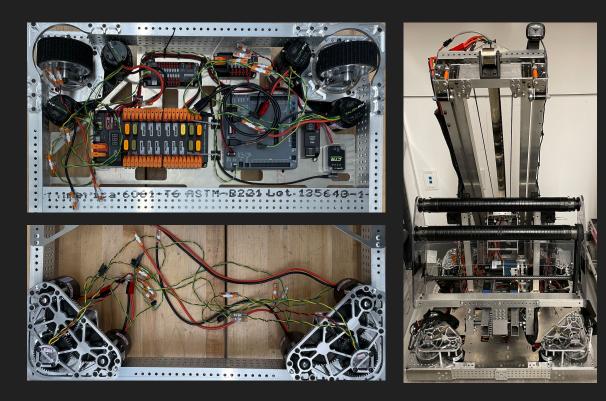
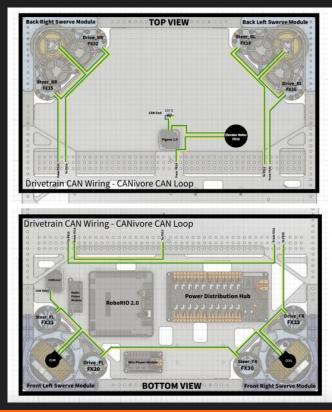

FRC Control System Overview

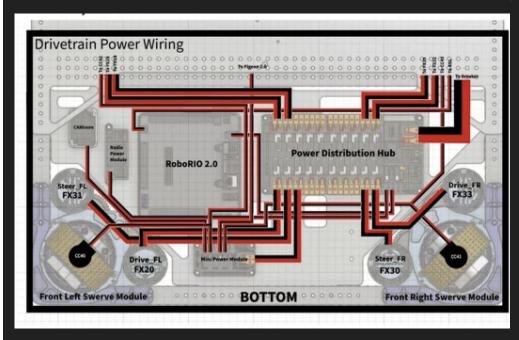
Control System Components



Mount as low as possible!

 \bullet


- Low CG = less tipping
- Serviceability is very important
 - Ensure all control system components are easily accessible
 - Helps with troubleshooting.
 - Easier to switch out failed components.
 - Also helps with robot inspections at competitions


Vertigo (2023 Season Robot)

- //// 972 \{ | |

Vertigo Wiring (2023 Season Robot)

=

Robot Battery

Battery Basics

- A 12 V battery
- Do not carry by battery cables
- Replace after each match

Check Battery before placing in robot

- Under .02 resistance (Check With Battery Beak)
- Over 100% Charge
- Check battery terminal insulation and battery cables and connector

Battery Beak

- Connects to battery terminal connector
- Always use before placing battery in robot

How to Use:

- Click the button twice and wait some time for the numbers to appear
- Check for Charge ≥1 00% and "Rist" ≤ .02 Ohms

Robot Circuit Breaker

- Needs to be easily accessible on the robot.
- This the main On and off switch for robot
- Rated 25-120 amps
- Click the red thingy to turn off the robot
- Press the lever in to turn on the robot
- Control power from PDH to battery

RSL (Robot Signal Light)

- Enabled on & flashing
- Disabled on
- Off off
- Connected to roborio
- Mount location is important, as it <u>must be visible during</u> <u>matches</u>

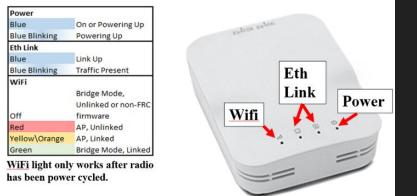
Power Distribution HUB (PDH)

PDH Fuses

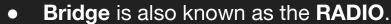
Mini Power Module

- <u>Powers everything!</u>
- Needs to be easily accessible and during robot inspection
- Receives power from the battery
- Specific ports for specific use cases
- Fuses go into PDH ports
 - 20, 30 & 40 amp
- Connects to roborio with CAN bus can get current draw in code
- PDH has status lights (unlike PDP)
- Supports up to 40A (unlike PDP)
- BUILT IN Voltage Regulator Module aka the VRM.
- Can add extra power ports via the Mini Power Module (MPM)

RoboRIO 2.0 : Brain



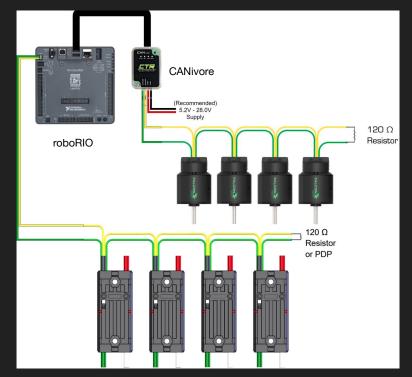
- Runs team-generated code that commands all of the other hardware.
- Runs code stored on SD Card
- Connects to sensors, RSL (the light)
- Can connect to drive station computer via USB


Connections:

- To "bridge" through Radio Power Module (RPM) for wifi connection
- To PDH for power
- End of CAN loop
- To drive station computer and the Field Management Systems (FMS) at competitions

Bridge - RADIO

Additional Information: Programming the Radio (wpilib)


- Facilitates communication between driver station, robot, and FMS (Field Management System)
- Wifi takes a minute to create network
- Mount it high for better connection
- How to Connect:
 - First ethernet port to connect to Radio
 Power Module (RPM)
 - Additional ethernet (PoE) ports to connect to a camera or network switch

Radio Power Module (RPM)

- Provides powers to the **Bridge**
- Passes signal between the radio and roboRIO
- RPM provides <u>power over the ethernet cable</u> (PoE) to the bridge.
- Connections:
 - Power (red and black) from roborio
 - NI roboRIO Ethernet Port connects to Roborio
 - WIFI RADIO port connects to Bridge

The CAN bus

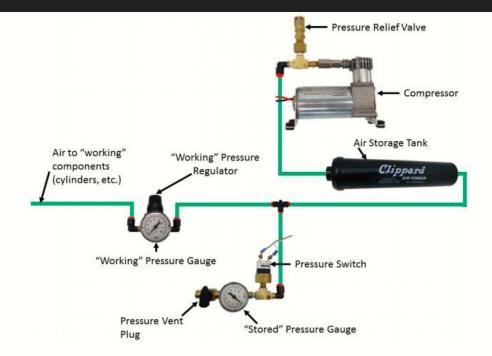
PDH is not shown being connected into the CAN BUS in the above example.

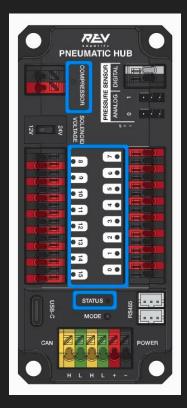
- Allows roborio to control stuff
- CAN wire is green/yellow
- On end of the CAN bus should be connected to a 120 ohm resistor.
- The **CANivore** is a USB-to-CAN device
- CAN Bus daisy chains or control system elements together
 - motor controllers, PDH, Mini
 Power Module (MPM), and the
 Pneumatics Hub Control Module
 (PHCM) if there are pneumatics on
 the robot
 - If one connection is broken, connection to all devices after the break is lost
- The robot inspector will check the CAN Bus during robot inspection

Can Coder

- Rotary magnetic encoder that communicates over the CAN bus.
- Used for swerve modules on robot.

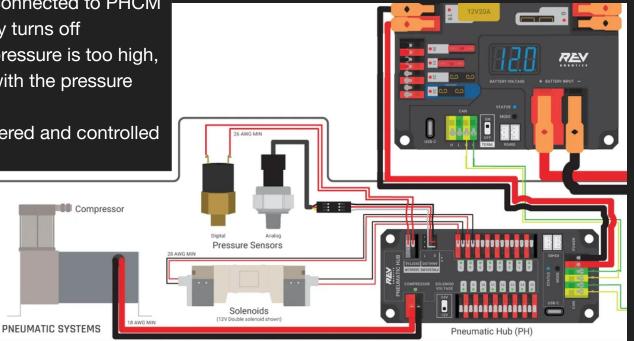
Nav2X & Pigeon 2.0

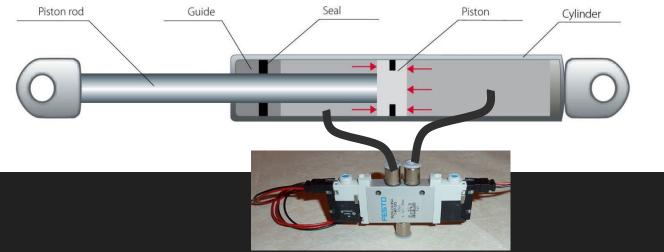

- NavX2 & Pigeon 2.0 are a sensor and motion processor
 - provides accurate measure of motion
- Other end of CAN
- Encoders
 - absolute & quadrature



Pneumatics

- Compressor fills tank
- Pressure release valve to empty tank
- Stored pressure: 120 psi
- Working pressure: 60 psi
- Air ends up in solenoids, solenoids control air to pistons


Pneumatics Hub Control Module (PHCM)


- Controls solenoids
 - Solenoids control pistons
- Controls compressor
- Controls pressure switch
- Each port is labelled and controls one solenoid
- Double solenoids use two ports since they have two solenoids in them
- Part of CAN bus
- Can be powered from PDH

Pneumatics Components

- Pressure switch is connected to PHCM
- PHCM automatically turns off compressor when pressure is too high, also will let out air with the pressure switch
- Compressor is powered and controlled by PHCM

Pistons

 Manifold, space efficient stackable solenoid

- Double solenoid will send air to one of the two cavities
- This will make the piston expand or contract

Motors - 3 main classes

NEOs

- Use sparkmax
- Brushless
- Integrated encoder
- Completely different system than other motors

Classic Motors

- Use any motor controller
- No integrated encoder
- Examples: CIM, 775, BAG

- Integrated motor controller and encoder
- Newest FRC motor, most powerful motor
- brushless

Motor Controllers

- Get power from PDH, gives power to motors
- Controlled with CAN bus via Canivore & roboRIO
- Sometimes can read encoders
- Brushless motors NEED brushless motor controllers

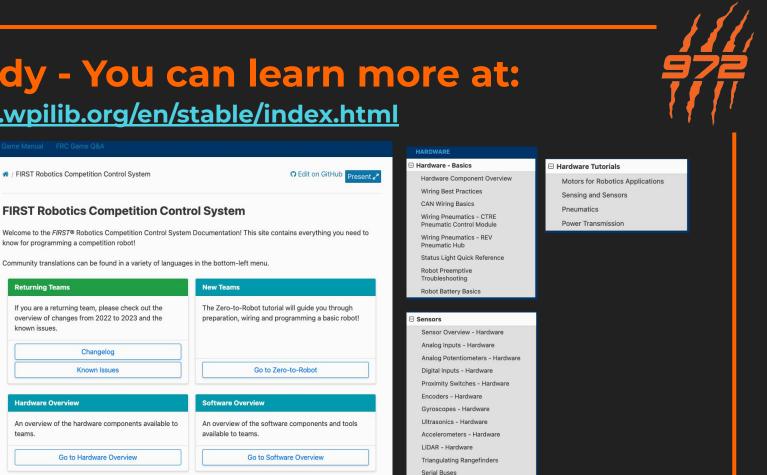
Motor controllers

Brushed motor controllers

- Talon SRX
 - Has encoder port for encoder
- Victor SPX
 - Does not have encoder port for encoder

Brushless motor controllers

- SparkMax
 - Controls all NEO motors
- Requires encoder to be plugged in
 - \circ Talon FX
 - Integrated into Falcon 500 motor



Typical Wiring used on our Robots Stranded wires 24 AWG - Sensors VS 22 AWG - CAN, Limit Switch STRANDED - More Flexible & Easier to Route 12 AWG - PDH to Motors - Withstand Vibrations & Flexing 6 AWG - Battery \bullet +5V PWM CAN Bus 26 AWG 28 AWG Minimum Minimum GROUND HIGH LOW GROUND(-) SIGNAL LIVE(+) Wire Gauges Shown in American Wire Gauge (AWG) Minimum Gauge per 6 AWG 12 AWG 18 AWG 22 AWG connection shown 24 AWG 26 AWG 28 AWG

Recap on Control System choices

- Control system component placement should be considered during all aspects of robot design.
 - Lowest possible center of gravity (CG) should be considered at all times.
- Serviceability, all parts must be easy to see, reach and replace.
 - You will need to troubleshoot and replace failed control system components.
 - This will also help you out during robot inspection.
- Components should never be used as hard stops
- Wiring, and cable management

 Consider how to effectively use cable trays and plan cable runs with serviceability in mind.

Self Study - You can learn more at: https://docs.wpilib.org/en/stable/index.html

Search docs

Introduction Step 1: Building your Robot Step 2: Installing Software Step 3: Preparing Your Robot Step 4: Programming your Robot CONTROL SYSTEM OVERVIEWS Hardware Component Overview Software Component Overview

PROGRAMMING BASICS

What is WPILib?

2023 Overview

VS Code Overview

Dashboards

Telemetry

FRC LabVIEW Programming

teams.

Hardware APIs

CAN Devices